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Abstract—Animal vocalisations contain important information
about health, emotional state, and behaviour, thus can be po-
tentially used for animal welfare monitoring and behavioural
neuroscience studies. Motivated by the spectro-temporal patterns
of chick calls in the time–frequency domain, in this paper we
propose an automatic system for chick call recognition using
the joint time–frequency scattering (JTFS) transform. Taking
full-length recordings as input, the system first extracts chick
call candidates by an onset detector and silence removal. Af-
ter computing their JTFS features, a support vector machine
classifier groups each candidate into different chick call types.
Evaluating on a dataset comprising 3013 chick calls collected
in laboratory conditions, the proposed recognition system using
the JTFS features improves the frame- and event-based macro
F-measures by 10.2% and 11.7%, respectively, than that of a
mel-frequency cepstral coefficients baseline.

Index Terms—Audio signal processing, bioacoustics, scattering
transform.

I. INTRODUCTION

Livestock farming is central for human sustainment.
As farming technologies are booming, the large-scale and
breeding-intensive poultry industries require systems to auto-
matically monitor the welfare of animals. Livestock vocalisa-
tions play a crucial part in such systems, for example, assess-
ing laying hens’ thermal comfort [1], finding avian influenza-
infected chickens to prevent the spread of diseases [2], and
detecting abnormal sound of broilers [3] as an early warning
tool. Yet, to the authors’ knowledge, there is limited computa-
tional research on chick vocalisations and not any prior work
on automatic chick call recognition.

Several decades ago, researchers [4] grouped chicks’ vo-
calisations into contact (or distress) calls and pleasure calls,
analysed their characteristics through displaying them on the
spectrogram, and explored the common features of the sound
signals that stimulate the production of each type of call. It
was reported that contact calls are composed of descending
frequencies only, are much louder, reach lower frequencies,
and are given at a slower rate; while pleasure calls perform
the opposite, i.e., are composed of ascending frequencies, are
much softer, start from higher frequencies, and are produced
at a faster rate. Variations of chick sound patterns under

Most of the work took place when the first author was at Queen Mary
University of London.

successive changes in social isolation were analysed in [5].
Four types of chick calls were all labelled manually by visual
inspection of the spectrogram: pleasure calls, contact calls,
short peeps, and warbles.

As a pilot study towards fully automatic chick call recog-
nition, we focus on two most frequent call types: pleasure
call and contact call. Inspecting both types of calls in the
time–frequency domain as shown in Fig. 1, we notice that
pleasure calls (0-3 s) are characterised by upward frequency
changes, low energy, and short duration while contact calls (3-
6 s) exhibit the opposite, i.e., downward frequency changes,
high energy, and long duration, which matches the findings
in [4]. These spectro-temporal patterns are similar to the por-
tamento musical playing technique explored in [6]. The latter
technique also exhibits continuous frequency changes along
with temporal modulations, which were shown in [6] that can
be captured by the joint time–frequency scattering (JTFS).
The JTFS is an instance of the scattering transform [7], a
signal representation that is locally invariant to translations and
stable to deformations. By adding a frequency scattering along
the log-frequency axis, the JTFS exhibits extra invariance to
frequency transpositions. These invariance properties make it
a desirable representation for chick call recognition.

Fig. 1. Examples of pleasure (0-3 s) and contact (3-6 s) chick calls.

To the authors’ knowledge, this is the first study to auto-
matic recognition of chick calls using the joint time–frequency
scattering transform. We propose a recognition system com-
prising two stages: (1) detection stage: we extract chick call
candidates using an onset detector, followed by silence re-
moval; (2) recognition stage: with the JTFS features extracted,
a support vector machine classifier groups each candidate
into different chick call types. The results show that the



JTFS features outperform a mel-frequency cepstral coefficients
baseline, with the frame- and event-based macro F-measures
improved 10.2% and 11.7%, respectively. We introduce each
stage in Sections II and III, respectively. Section IV presents
the evaluation dataset, metrics, and results, and Section V
concludes the paper.

II. CHICK CALL DETECTION

The number of calls emitted by the chicks is a good
indicator of their state [5]. Automatic detection of chick calls
can either be a preprocessing stage for chick call recognition
or as a separate system specifically optimised for chick call
counting. We investigate the former case by firstly detecting
chick call onsets and then removing silence to extract chick
call segments. We detect the onsets of chick calls using
the SuperFlux [8] algorithm, which calculates the difference
per frequency band in the magnitude spectrogram, applies a
maximum filter along the frequency axis, sums up all positive
changes over all bands, and selects the final onsets using
peak-picking. The application of the maximum filter before
summing up the positive changes reduces the number of
false positives originated from frequency modulations without
missing onsets.

Fig. 2 top displays the reference (dotted lines) and detected
onsets (solid lines) of example chick calls. As can be seen,
the intervals between two onsets include a large proportion
of silence. We extract chick call segments from the inter-
onset intervals by removing silence where the energy of the
signal is below a certain threshold. A threshold of -32 dB
is used according to experimenting on a grid of threshold
values. Fig. 2 bottom shows the comparison of the reference
call segments and the output segments of our detection system.

Fig. 2. Visualisation of onset detection and segmentation results
for example chick calls. Top: spectrogram with reference onsets in
dotted lines and detected onsets in solid lines; bottom: comparison
of reference and detected call segments. For this example, the frame-
based precision P=96%, recall R=67%, and F-measure F=79%.

III. CHICK CALL RECOGNITION

A. Joint Time–Frequency Scattering

Similar to convolutional neural networks (CNNs), the scat-
tering transform comprises operations of wavelet convolutions,
modulus nonlinearities, and average pooling. Decomposing an
audio waveform x(t) by a wavelet filterbank ψλ(t) and taking

complex modulus, we obtain the first-order wavelet modulus
transform, which is also known as the scalogram X(t, λ):

X(t, λ) = |x ∗ψλ|(t), (1)

where t is the time variable and λ is the log-frequency variable
of ψλ(t). Averaging X(t, λ) by a lowpass filter ϕT (t) with
averaging scale T , the first-order scattering transform S1(t, λ)
is defined as

S1(t, λ) =
(
|x ∗ψλ| ∗ ϕT

)
(t). (2)

Although S1(t, λ) is invariant to time shifts, the averaging
comes at the detriment of fast temporal modulations with
time structures smaller than T . To recover these temporal
modulations and to capture the variation along log-frequency
axis, we decompose the scalogram with a joint time–frequency
wavelet convolution, complex modulus, and averaging, ac-
cording to [9]. Therefore, the obtained representation has all
desirable properties: stability to time warps, and invariance to
time shifts and frequency transpositions.

Convolving the scalogram X(t, λ) with a spectro-temporal
wavelet filterbank Ψvt,vf ,θ(t, λ), taking complex modulus,
and averaging by a two-dimensional (2-D) lowpass filter
ΦT,F (t, λ), the joint time–frequency scattering (JTFS) trans-
form [9] is defined as:

S2(t, λ, vt, vf , θ) =
(∣∣X t,λ

∗ Ψvt,vf ,θ

∣∣ t,λ∗ ΦT,F

)
(t, λ). (3)

T and F are the temporal and spectral averaging scales

of ΦT,F (t, λ), respectively. The symbol
t,λ
∗ denotes a 2-D

convolution over the time variable t and the log-frequency
variable λ. The 2-D joint wavelet filterbank Ψvt,vf ,θ(t, λ)
is derived from two 1-D wavelet filterbanks, the temporal
filterbank ψvt(t) and the spectral filterbank ψvf ,θ(λ), by:

Ψvt,vf ,θ(t, λ) = ψvt(t)ψvf ,θ(λ). (4)

vt and vf are the log-frequency variables of ψvt(t) and
ψvf ,θ(λ), and measures the temporal and spectral variabilities,
respectively. θ = ±1 is the orientation variable that reflects
the oscillation direction (up or down) of the spectro-temporal
pattern. θ = −1 flips the centre frequency of ψvf ,θ(λ)|θ=1
from 2vf to −2vf .

Fig. 3 shows the log-frequency spectrograms and the frame-
wise JTFS features of a pleasure call and a contact call. The
directions of frequency changes are captured by the clear
slopes, as shown by the bottom figures. For pleasure calls,
the energy concentrates on the upward (left) side, while that
of the contact call appears on the downward (right) side. Since
chick calls with upward and downward frequency changes over
time belong to different classes, i.e., pleasure calls and contact
calls, we use the JTFS of both directions.

B. Recognition System

We extract the JTFS features for chick calls by setting
appropriate hyperparameters. An averaging scale T = 214

(in samples, corresponding to 372 ms) is used to roughly
cover the average chick call duration. Filters per octave of



Fig. 3. The joint time–frequency scattering (JTFS) representation of
example pleasure (left) and contact (right) calls. Top: log-frequency
spectrogram; bottom: frame-wise JTFS features.

the temporal filters in the first-order wavelet decomposition
Q

(t)
1 = 16 are used to offer a fine resolution scalogram.

Q
(t)
2 = 2 and Q

(f)
1 = 2 are the filters per octave of the

temporal and spectral wavelet filterbank used in the joint
wavelet convolution due to the less oscillatory nature of
the signal at these decompositions. M = [0, 50] Hz is the
extracted range of temporal modulation that contains the core
information of chick calls. To account for temporal context, we
calculate the mean and standard deviation of the JTFS features
of 5 frames centred at the current frame. The frame size and
dimension of the resulting JTFS features are 92 ms and 850,
respectively. With the features calculated, we propose a chick
call recognition system with two classification schemes:

• Scat-Only: in this scheme, a machine learning classifier
takes the JTFS features of the whole recording as input
and outputs frame-wise labels; neighbouring frames with
the same label are then fused into chick call events. We
postprocess the obtained chick call events by gap filling
and minimum duration pruning. We fill the gaps between
neighbouring events when the gaps are shorter than the
shortest event in the training set; and prune the events that
have smaller duration than the minimum duration event in
the training set. The minimum duration is automatically
calculated subject to the call type and the train-test split
during recognition.

• Seg-Scat: this scheme builds upon the detection system
introduced in Section II. A machine learning classifier
takes the JTFS features of the extracted chick call seg-
ments as input, outputs frame wise labels, and assigns
one label to each segment based on the majority vote of
its frame labels.

Both classification schemes use support vector machines
(SVMs) [10] with Gaussian kernels as classifiers due to their
good generalisability based on a limited amount of training
data [11]. In the recognition process, we split the dataset (see
Section IV-A) into training and test sets by leaving one chick
subject out. Within each split, we run a 3-fold cross-validation,

sampling the training set in a way that ensures approximately
the same ratio of positive and negative class instances for a
given chick call type in each fold. The SVM hyperparameters
to be optimized are the error penalty parameter C and the
width of the Gaussian kernel γ. We use consistent parameter
grids of 10{0:1:2} and 10{−4:1:−2} for C and γ, respectively,
during training and select the best ones for testing. For the
Scat-Only scheme, we calculate the JTFS features of full-
length recordings, while for the Scat-Only method, the JTFS
features are calculated for the detected chick call candidates.
All features are z-score normalised with the training-set statis-
tics. Our source code1 is based on the ScatNet2 toolbox and
is publicly available for reproducibility.

IV. EVALUATION

A. Dataset

As a pilot study3, we collected data in laboratory conditions,
using domestic chicks from the Ross 308 strain of the species
Gallus gallus as an animal model. We placed one chick at a
time in an arena within 12 hours after their hatching. For each
chick, we recorded their movements and sounds for around 10
minutes by a Microsoft LifeCam Studio Webcam and an AKG
P170 microphone with a Behringer U-Phoria UMC204HD
audio interface. The camera was placed approximately 1 m
above the centre of the arena and the microphone 1 m above
the outer wall of the arena. All data was recorded at a sampling
rate of 44.1kHz/16bits. We collected one recording for one
chick at a time.

As a proof-of-concept study in this paper, we evaluate
the proposed system on a dataset comprising recordings of
4 chicks. This is due to the available annotations we have
currently: start time, end time, and call type annotations for
full-length recordings of 4 chicks. All the annotations were
created by an expert in chick behaviour from the Prepared
Minds Lab4 at Queen Mary University of London using Sonic
Visualiser [12]. The expert was previously trained to a 91.1%
agreement level with another expert in the same task on an
example chick. For ambiguous labelling cases, decisions were
made following discussions between three experts. Three types
of chick calls were annotated: pleasure, contact, and uncertain
calls. Uncertain calls are those calls that all the three experts
were not certain about. The total duration of the dataset is 44
minutes. Table I lists the number of each type of calls in the
dataset, where the classes are highly imbalanced. As described
in Section III-B, we conduct a subject-independent evaluation
of our recognition system, with no overlap of chick subject in
the training and test sets.

B. Baseline and Metrics

To the authors’ knowledge, there is not yet any prior work
on fully automatic recognition of chick calls. We compare

1https://github.com/changhongw/jointscat-chickcall
2https://www.di.ens.fr/data/software/scatnet
3All experiments in this study were approved by the Animal Welfare and

Ethical Review Body committee at Queen Mary University of London.
4https://www.preparedmindslab.org



TABLE I
NUMBER OF PLEASURE, CONTACT, AND UNCERTAIN CALLS
PRODUCED BY EACH CHICK IN THE CHICK CALL DATASET.

Chick Pleasure Contact Uncertain Total

1 119 315 9 443
2 617 492 146 1255
3 47 682 60 789
4 36 455 35 526

Total 819 1944 250 3013

the proposed recognition system with that taking the mel-
frequency cepstral coefficients (MFCCs) as input, which were
commonly used for animal vocalisation analysis [2], [13],
[14]. Similarly to the main experiments (see Section III-B),
we conduct two baseline classification schemes, i.e., MFCC-
Only and Seg-MFCC. The former calculates the MFCCs of
full recordings, outputs frame labels of chick call type, and
fuses neighbouring frames with the same labels into chick
call events. The latter first extracts chick call candidates using
the detection method in Section II and then computes the
MFCCs for each segment. The frame size and dimension of
the MFCC features are 25 ms and 24, respectively. When
comparing the results from the MFCCs to that from the JTFS,
we resample the former to the same frame size of the latter
(92 ms). We conduct both frame- and event-based evaluation of
the detection and the recognition results. The former compares
the output chick call labels with the ground truth in a frame-
wise manner, while the latter compares the predicted chick
call events with the ground truth by their onset and duration.
An event is considered to be correctly detected when its onset
falls in a tolerance window of ±100 ms around that of the
reference call and its duration is more 50% of the reference
call duration. We use precision P , recall R, and F-measure F
as the metrics for each evaluation method [15].

C. Results

To investigate the influence of the detection stage on
the final recognition stage, we first present the evaluation
of both onset detection and segmentation. We evaluate the
onset detection result using the mir eval library [16], which
calculates a maximum match of the reference and the detected
onset times subject to a window constraint of ±150 ms.
The segmentation result is evaluated using both frame- and
event-based evaluation methods introduced in Section IV-B.
Table II shows the detection and segmentation results for each
chick and those on the whole dataset. We achieve average
F-measure of 89.8% for the onset detection stage; for the
segmentation result, average F-measures of 74.3% for frame-
based evaluation, and 72.3% for event-based evaluation are
obtained.

Table III displays the recognition results on the recordings
of the four chicks. We compare these results from four fronts:
the JTFS features versus the MFCCs; the two classification
schemes using the JTFS; the recognition results using detected
versus annotated chick call segments; and the results of

TABLE II
ONSET DETECTION AND SEGMENTATION RESULTS FOR EACH

CHICK IN THE CHICK CALL DATASET (P , R, AND F ARE IN %;
T/A=TOTAL OR AVERAGE).

Chick #calls
Onset detection Segmentation Segmentation

(mir eval) (frame-based) (event-based)

P R F P R F P R F
1 443 74 93 83 56 80 66 62 77 69
2 1255 95 98 97 75 70 72 68 67 67
3 789 88 99 93 87 82 84 78 86 81
4 526 77 97 86 71 81 75 65 81 72

T/A 3013 83.5 96.8 89.8 72.3 78.3 74.3 68.3 77.8 72.3

different call types. Comparing the Scat-Only with the MFCC-
Only method, we observe that they achieve comparable results
in the frame-based evaluation, both with macro F-measures
of 32.1%; while in the event-based evaluation, the former
underperforms the latter, with macro F-measure of 12.7%
against 23.8%. For the comparison between the JTFS and the
MFCCs using detected segments, the Seg-Scat outperforms
Seg-MFCC, with macro F-measures improved 10.2% in the
frame-based evaluation and 11.7% in the event-based evalua-
tion, respectively. Narrowing the scope with the recognition
results using the JTFS, i.e., Scat-Only and Seg-Scat, the
former underperforms the latter in both frame- and event-
based evaluation. The Seg-Scat increases macro F-measure by
6.2% as compared to that of the Scat-Only in the frame-based
evaluation and by 26.2% in the event-based evaluation. It is
expected that the Scat-Only yields much lower event-based
macro F-measures in contrast to the Seg-Scat, where the latter
uses chick call segments, either detected or annotated.

As shown in Table III, both ‘Seg-’ methods, i.e., Seg-
Scat and Seg-MFCC, exhibit much better performance using
the annotated chick call segments as compared to using the
detected chick call segments. In the frame-based evaluation,
macro F-measures increase 20.9% and 10.5% for the two
methods, respectively; the corresponding improvement in the
event-based evaluation are 19.7% and 10.1%, respectively.
This verifies the potential of the JTFS for chick call recog-
nition. Inspecting the F-measures of each type of calls, we
notice that all four methods exhibit better performance on
contact call classification than that on pleasure and uncertain
call classification. This may be attributed to the small amount
of samples for the latter two types of calls or to their
characteristics (e.g., lower amplitude and shorter duration).
Yet, the JTFS is more robust to data imbalance as compare to
the MFCCs. For example, the Seg-Scat achieves frame-based
F-measure of 60.3% against 16.5% from the Seg-MFCC for
recognising pleasure calls using annotated segments, although
both methods have comparable results on contact call classi-
fication.

V. CONCLUSION

In this paper, we have proposed a fully automatic system for
chick call recognition using the joint time–frequency scattering



TABLE III
FRAME- AND EVENT-BASED RECOGNITION RESULTS IN TERMS OF F-MEASURE (%) USING FULL-LENGTH RECORDINGS, ANNOTATED

CHICK CALL SEGMENTS, AND DETECTED CHICK CALL SEGMENTS AS INPUTS, RESPECTIVELY, FOR THE PROPOSED AND THE BASELINE
METHODS: (1) SCAT-ONLY: RECOGNISE CHICK CALLS DIRECTLY FROM FULL-LENGTH RECORDINGS USING THE JTFS ONLY; (2)

SEG-SCAT: SEGMENT AUDIO INTO CHICK CALL CANDIDATES AND CLASSIFY EACH SEGMENT USING THE JTFS; (3) MFCC-ONLY:
RECOGNISE CHICK CALLS DIRECTLY FROM FULL-LENGTH RECORDINGS USING THE MFCCS ONLY; (4) SEG-MFCCS: SEGMENT AUDIO
INTO CHICK CALL CANDIDATES AND CLASSIFY EACH SEGMENT USING THE MFCCS. ‘MARCO’ MEANS THE MACRO F-MEASURE OF THE

THREE TYPES OF CALLS.

Recognition
system input

Classification
scheme

Frame-based Event-based

Pleasure Contact Uncertain Macro Pleasure Contact Uncertain Macro

Full-length recordings Scat-Only 10.5 79.5 6.3 32.1 7.0 29.8 1.4 12.7
MFCC-Only 4.8 83.8 7.8 32.1 2.5 61.0 8.0 23.8

Annotated segments Seg-Scat 60.3 95.3 22.0 59.2 63.0 91.5 21.3 58.6
Seg-MFCC 16.5 91.0 8.3 38.6 18.8 87.3 5.8 37.3

Detected segments Seg-Scat 17.8 82.0 15.0 38.3 19.5 83.1 14.0 38.9
Seg-MFCC 4.5 77.0 2.8 28.1 3.6 75.0 2.9 27.2

(JTFS). The system first extracts chick call candidates from
full-length recordings by onset detection and silence removal;
and then classifies each candidate based on their JTFS features.
Compared with a mel-frequency cepstral coefficients baseline,
the proposed system using the JTFS of detected chick call
segments improves macro F-measures by 10.2% and 11.7%
in the frame- and event-based evaluation and is more robust
to data imbalance. Comparison of the recognition performance
using detected and annotated chick call segments verifies the
potential of the JTFS for chick call recognition.

Three limitations exist in the current study. We collected
data in a laboratory which is much cleaner than that recorded
in real living conditions of chicks. For the latter case, we could
process the recordings with a source separation technique [17]
to separate the sound of multiple chicks or a denoising method
to remove noise, prior to the application of the JTFS features.
The other two limitations include the small amount of data, in
terms of both duration and number of chicks, and the highly
imbalanced number of examples for each class. Lack of data is
the main reason of not having applied deep learning techniques
in this paper. For future work, we may use semi-supervised
or unsupervised learning for the task due to the availability of
unlabelled data. Unsupervised learning may also potentially
discover new chick call patterns. We can also compare the
proposed system to existing vocalisation detection systems
for other animals, for example, the broiler stress detection
system in [14]. Once fully developed, the proposed recognition
system could be used for other research in computational
bioacoustics, such as acoustic playback studies on reciprocal
chick calls, neurophysiological studies to examine the elec-
trophysical recordings in chicks exposed to specific calls, and
analysis of other bioacoustic signals exhibiting similar spectro-
temporal patterns.
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